1868年,瑞士的内科医生Friedrich Miescher从外科医院包扎伤口的绷带上的脓细胞核中提取到一种富含磷元素的酸性化合物,将其称为核质(nuclein);后来他又从鲭鱼精子中分离出类似的物质,并指出它是由一种碱性蛋白质与一种酸性物质组成的,此酸性物质即是现在所知的核酸(nucleic acid)。1944年Oswald Avery,Colin Macleod和Maclyn McCarty发现,一种有夹膜、具致病性的肺炎球菌中提取的核酸桪NA(deoxyribonucleic acid,脱氧核糖核酸),可使另一种无夹膜,不具致病性的肺炎球菌的遗传性状发生改变,转变为有夹膜,具致病性的肺炎球菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生。该项实验彻底纠正了蛋白质携带遗传信息这一错误认识,确立了核酸是遗传物质的重要地位;DNA遗传作用的进一步肯定来自Alfred Hershey和Martha Chase对一个感染大肠杆菌的病毒的研究。即用放谢性同位素32P标记噬菌体DNA,35S标记其蛋白质外壳,再用标记的噬菌体去感染培养的大肠杆菌,结果发现进入细菌体内,使细菌生长、繁殖发生变化的是32P标记的DNA,而不是35S标记的蛋白质,并且新繁殖生成的噬菌体不含35S,只含32P。1953年Watson和Crick创立的DNA双螺旋结构模型,不仅阐明了DNA分子的结构特征,而且提出了DNA作为执行生物遗传功能的分子,从亲代到子代的DNA复制(replication)过程中,遗传信息的传递方式及高度保真性,为遗传学进入分子水平奠定了基础,成为现代分子生物学发展史上最为辉煌的里程碑。后来的研究又发现了另一类核酸桼NA(ribonucleic acid,核糖核酸),RNA在遗传信息的传递中起着重要的作用。从此,核酸研究的进展日新月异,如今,由核酸研究而产生的分子生物学及其基因工程技术已渗透到医药学、农业、化工等领域的各个学科,人类对生命本质的认识进入了一个崭新的天地。
Copyright @ 2002-2010 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒佹儓闁搞劌鍊块弻娑㈩敃閿濆棛顦ョ紓浣哄Т缂嶅﹪寮诲澶婁紶闁告洦鍓欏▍锝夋⒑缁嬭儻顫﹂柛鏃€鍨垮濠氬Χ閸氥倕婀遍埀顒婄秵閸嬪懘鎮甸幒妤佲拺缂備焦锚缁楁帡鏌ㄩ弴妯衡偓婵嗭耿娓氣偓濮婅櫣绱掑Ο璇茬濠电偛顕崗姗€鐛Δ鍛亹缂備焦岣块崢閬嶆⒑闂堟稓澧曟俊顐n殘缁厼顫濋懜鐢靛帾闂佹悶鍎滈崘鍙ョ磾闁诲孩顔栭崰鏇犲垝濞嗘劒绻嗘慨婵嗙焾濡查攱绻濆▓鍨灈婵炲樊鍘奸~蹇涙惞閸︻厾锛滃┑鈽嗗灥椤曆囨瀹ュ鈷戦柤濮愬€曢弳鈧梺鍛婁緱閸n喖岣块悢鍏尖拺閻熸瑥瀚粈鍐┿亜閺囧棗鎳愰惌鍡涙煕閹伴潧鏋熼柣鎾寸懅缁辨帞鈧綆浜濋崑銉︺亜鎼淬埄娈曢柕鍥у缁犳盯濡烽敃鈧锟�. piccc.com 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢幘鑼槮闁搞劍绻冮妵鍕冀椤愵澀鏉梺閫炲苯澧柛鐔告綑閻g兘濡歌閸嬫挸鈽夊▍顓т簼缁傚秵娼忛妸褏鐦堥梺姹囧灲濞佳冪摥闂備胶枪閿曘倝顢氶鐘愁潟闁圭偓鍓氬ḿ鈺呮煠閸濄儲鏆╅柛妯哄船椤啴濡堕崱妤€顫庢繝娈垮枟閹稿啿鐣峰┑鍡╂僵閺夊牃鏅濋敍婊堟⒑缂佹﹫渚涢柛鐘崇墵瀹曟繈鏁冮崒娑氬幐闁诲繒鍋熼弲顐㈡毄婵$偑浼囬崒婊呯崲闂佸搫鏈惄顖炵嵁濡吋宕夐柣鎴炨缚閳ь剝顕ч—鍐Χ閸℃ḿ鈹涚紓鍌氱С缁舵岸鐛崘鈺冾浄閻庯綆浜滅粣娑欑節閻㈤潧孝闁哥噥鍨堕、鏃堟偄閸忓皷鎷绘繛杈剧秬婵倗娑甸崼鏇熺厱闁挎繂绻掗悾鍨殽閻愯尙绠婚柡浣规崌閺佹捇鏁撻敓锟� 濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻戦妵鍕箻閸楃偟浠肩紒鐐劤椤兘寮婚悢鐓庣鐟滃繒寮ч埀顒傜磽娴g瓔鍤欐俊顐g箞瀵寮撮姀鐘诲敹濠电娀娼уú銈壦囬埡鍛拺闁硅偐鍋涢埀顒佺墪鍗遍柛顐g妇閺€浠嬫煟濡櫣浠涢柡鍡忔櫅閳规垿顢欑拠鎻掔ギ閻庤娲濋~澶岀紦娴犲绀堥柛娆忣槹濞呮捇姊绘担鍛婅础濠⒀勵殔椤灝螣閼测晙绗夊銈嗙墱閸嬬偤鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷12011913闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿极閹剧粯鍋愰柛鎰紦閻㈠姊婚崒娆戣窗闁告挻鐟х划鏃傗偓闈涙憸娑撳秵銇勯弽顐沪闁绘挶鍎甸弻锝夊即閻愭祴鍋撻崷顓涘亾濮樼偓瀚� |