睡眠剥夺对大鼠脑5-羟色胺代谢及行为的影响
中国行为医学科学 1998年第4期第7卷 论 著
作者:郑乐颖 季红光 王海明 潘祥福 阮芳铭
单位:郑乐颖,季红光,王海明,潘祥福,阮芳铭,第二军医大学海医系,上海,200433
关键词:睡眠剥夺;行为;5-羟色胺;5-羟吲哚乙酸;大鼠
【摘要】 目的 探讨长时间睡眠剥夺(sleep deprivation,SD)对大鼠下丘脑和脑干5-羟色胺(5-HT)代谢及行为的影响。方法 用水上转盘(dish-over-water)睡眠剥夺模型对大鼠分别进行24h、48h、72h睡眠剥夺,观察睡眠剥夺后下丘脑、脑干两脑区5-HT代谢的变化,同时利用旷场试验观察大鼠主动行为的改变。结果 睡眠剥夺大鼠的旷场试验得分较非剥夺大鼠高(P<0.05),但随着时间的延长出现下降趋势;5-HT向5-羟吲哚乙酸(5-HIAA)转化在经过24h睡眠剥夺后显著增高(P<0.01),但在48h开始下降,72h后出现大幅下降(P<0.01)。结论 长时间睡眠剥夺对大鼠行为的影响是一个由兴奋到抑制的过程,这种变化可能与下丘脑和脑干的5-HT代谢有关。
The effects of prolonged sleep deprivation on brain serotonin metabolism and behavior in rats Zheng Leying, Ji Hongguang, Wang Haiming, et al.Department of Navy Hygiene, Second Militaly Medical University, Shanghai200433
【Abstract】 Objective The effects of prolonged sleeep deprivation(SD) on hypothalamus and brain stem 5-hydroxytryptamine (5-HT)metabolism and behavior in rats were studied.Method Dish-over-watermodel was used in order to observe the effects of 24hr, 48hr and 72hr sleep deprivation on hypothalamus and brain stem 5-HT metabolism in Sprague-Dawley rats, and the active behavior of rats was also examined by open field test (OFT) . Results The OFT scores were significantly increased after 24hr, 48hr and 72hr SD, but the scores after 72hr SD was lower than those after 24hr and 48hr SD(P<0.01). The5-hydroxyindoleacetic acid/5-hydroxytryptamine (5-HIAA/5-HT) ratio were significantly increased after 24hr SD in the hypothalamus and brainstem, but the ratio were decreased after 48hr and 72hr SD. Conclusion The activity behavior in sleep deprived rats exhibted an pattern from activity to depression, which may be related to thn 5-HT metabolic changes in hypothalamus and brain stem.
【Key words】 Sleep deprivation Behavior 5-HT 5-HIAA Rats
下丘脑、脑干的5-羟色胺及其代谢与机体的睡眠和疲劳密切相关,它能将机体产生的一些疲劳信息在脑内放大并传递使机体产生疲劳感和睡意[1]。研究表明,大鼠经过4h的睡眠剥夺后下丘脑、脑干等脑区的5-HT向5-HIAA转化增强[2]。提示大鼠体内可能存在一种机制,它能在机体遭受睡眠剥夺时通过加强脑内某些脑区5-HT的转化使得这些脑区5-HT的含量相对下降,从而使机体产生的疲劳感和睡意相对减弱,以维持机体处于清醒状态。本实验试图通过对大鼠在经受长时间睡眠剥夺时下丘脑、脑干5-HT代谢变化的研究,对该机制的作用及时限进行初步探索。
材料与方法
一、实验动物:雄性Sprague-Dawley大鼠,体重140.4±5.6g,在国标清洁级饲养实验室内,以12h/12h光/暗周期(光照时间0600~1800)单笼饲养于代谢笼内,自由饮食、适应一周后按体重随机分为四组(24hSD组、48hSD组、72hSD组以及对照组C组,每组各8只大鼠)进行睡眠剥夺实验。实验期间每日20:00用摄像记录并分析大鼠旷场试验得分。实验完毕,称重并处死大鼠,取脑组织进行生化分析。
二、 睡眠剥夺模型[3]:剥夺装置主要由20×40×60 cm3剥夺箱、直径30cm转盘及与转盘相连接的动力装置三部分组成。每次剥夺前大鼠在装置内适应4h。剥夺时,启动动力装置使转盘以6转/h的速度匀速转动。对剥夺组,在箱内转盘下注水,大鼠在转盘上一定的空间自由活动,但必须保持清醒,以免落水。对照组则因箱内未被注水,可以获得睡眠。
三、 旷场试验(open field test, OFT):旷场试验装置为高度60 cm、底面边长1m、内壁漆黑的有底方桶。方桶底面平分为25个小方格,正上方2m处架设摄像机。测定时大鼠置于装置底面中心,以大鼠3min内越过格子数目为水平得分,后肢站立次数为垂直得分,两者总和为旷场试验总得分[4]。每次更换动物之前,清洗旷场周壁及底面,以免上次动物余留的信息影响下次测试结果。
四、下丘脑和脑干5-HT、5-HIAA含量测定:断头处死大鼠,在冰玻璃片上取下丘脑和脑干两脑区组织,用冰生理盐水清洗、滤纸吸干表面水分并称重后,置液氮保存。5-HT、5-HIAA的测定采用荧光法[5]。
结 果
一、大鼠下丘脑、脑干5-HT、5-HIAA含量及5-HT/5-HIAA比值:大鼠下丘脑、脑干5-HT、5-HIAA含量在经过24、48、72h的睡眠剥夺后均较对照组明显增高(P<0.01);24、48h两剥夺组间相差不显著,而72h剥夺组5-HT含量显著高于24、48h剥夺组(下丘脑P<0.01,脑干P<0.05)。大鼠下丘脑、脑干5-HT/5-HIAA比值在经过24、48、72h的睡眠剥夺后均较对照组明显增高
(<0.01);而48、72h剥夺组较24h剥夺组低(P<0.05);下丘脑72h剥夺组低于48h剥夺组(P<0.01),而脑干这两组无显著差别。(见表1)
表1 大鼠下丘脑、脑干5-HT、5-HIAA含量及5-HT/5-HIAA比值(n=8)
|
C组 |
24SD组 |
48SD组 |
72SD组 |
下 |
5-HT(ng/mg) |
1.28±0.08** |
2.34±0.13 |
2.35±0.13 |
2.78±0.15▲▲ |
丘 |
5-HIAA(ng/mg) |
0.64±0.03** |
1.74±0.09 |
1.67±0.07 |
1.68±0.06 |
脑 |
5-HIAA/5-HT(%) |
49.99±3.11** |
74.39±2.27 |
71.14±2.32# |
60.69±1.40▲▲ |
脑 |
5-HT(ng/mg) |
2.94±0.21** |
4.27±0.36 |
4.59±0.29 |
4.88±0.22▲ |
5-HIAA(ng/mg) |
0.68±0.04** |
1.65±0.09 |
1.60±0.07 |
1.62±0.07 |
干 |
5-HIAA/5-HT(%) |
23.29±1.26** |
38.90±3.17 |
34.92±1.89# |
33.31±1.89# |
**与24SD组、48SD组、72SD组比较 (P<0.01), #与24SD组比较 P<0.05 ▲▲ 与24SD组、
48SD组比较 P<0.01, ▲ 与24SD组、48SD组比较 P<0.05
二、大鼠旷场试验得分:24、48、72h剥夺组大鼠及对照组大鼠的OFT得分分别为:45.97±11.08,42.36±9.56,32.73±6.28,11.71±4.76。各剥夺组大鼠的OFT得分均较非剥夺组大鼠显著增高(P<0.01),而24和48h剥夺组之间OFT得分相差不显著,72h剥夺组大鼠的OFT得分较24、48h剥夺组低(P<0.05)。讨 论
5-HT作为神经递质参与控制疲倦感和睡眠。脑中色氨酸浓度的增高会加快5-HT的合成,引起脑内5-HT浓度的升高,使机体产生疲劳感和睡意。色氨酸是唯一与血浆白蛋白结合的氨基酸,以游离形式并与支链氨基酸(亮氨酸,异亮氨酸,缬氨酸)竞争结合同一氨基酸载体通过血脑屏障[6]。所以脑中色氨酸浓度的高低主要受血浆中游离色氨酸浓度和支链氨基酸浓度这两个因素的制约。睡眠剥夺时由于机体能量消耗加大,脂动员增加,肌肉对支链氨基酸摄取增加,血中支链氨基酸浓度下降,色氨酸水平相对升高,使得进入脑内的色氨酸增加,5-HT合成也增加,机体出现疲劳感和睡意。但机体可通过加快5-HT的转化,减小其在脑内的聚积,以期达到维持清醒的目的。本实验结果表明,大鼠在经过24h睡眠剥夺后5-HT的转化率达到最高,经过48h剥夺后转化率下降,而在72h剥夺后转化率出现大幅下降。说明大鼠在经历24h或更短时间睡眠剥夺时,下丘脑和脑干两脑区尚能及时将积聚的5-HT转化,减小该脑区5-HT增加的幅度,使机体较好地处于清醒状态。而随着时间的延长这种转化作用逐渐减弱,引起5-HT在上述脑区积累增多,机体产生越来越严重的睡意和疲倦感。在这种转化机制中起关键作用的是单胺氧化酶(MAO),它是5-HT转化成5-HIAA的限速酶。据报道,MAO活性在24h睡眠剥夺后显著增高,而随着剥夺时间的延长逐渐减弱[7]。所以,如果在睡眠剥夺过程中设法使MAO活性能在较长时间内维持较高的活性,将有助于及时转化积聚的5-HT,减轻5-HT升高的影响。
据报道,睡眠剥夺情况下,由于大鼠脑内DA释放增加,大鼠的精神行为表现出一定的兴奋性。如,经过24h睡眠剥夺的大鼠“Y”型迷宫测试的电刺激回避得分比非剥夺组高[8];经过48、72h睡眠剥夺后大鼠游泳行为明显增加[9];另外,大鼠经48h睡眠剥夺后对强音刺激的反应比非剥夺组大鼠表现出更强的敏感性,表现为抖动、抽搐更剧烈,持续时间更长[10]。本实验剥夺组大鼠的旷场试验得分高于非剥夺组的结果也证实大鼠在经过一定时间的睡眠剥夺后精神行为表现出一定的兴奋性。但72h睡眠剥夺后的旷场试验得分明显低于24h和48h剥夺后的得分(P<0.05),说明大鼠在经历72h的睡眠剥夺后,精神行为表现出一定的抑制趋势。这可能与5-HT在下丘脑和脑干的过度积聚有关。研究表明大鼠的精神行为兴奋性与DA释放成正相关,与5-HT积聚成负相关[11],5-HT的积聚可引起精神疲劳,使动物的精神行为产生抑制[1]。从本实验的结果看,大鼠在经过24、48、72h的睡眠剥夺后,旷场试验得分明显高于非剥夺组,表现出一定的兴奋性,这可能是由于大鼠脑内DA释放增加产生的效应强于5-HT积聚产生的效应;而大鼠经过72h睡眠剥夺后旷场试验得分降低主要原因可能在于5-HT的转化率下降,使得5-HT的积聚进一步增加而DA的释放由于接近耗竭相对减少所致。类似的研究也证实大鼠在经过5至10天的睡眠剥夺后,精神行为出现明显的抑制[12],这可能亦与上述因素有关。
解放军“九五”科研基金资助
参考文献
[1]Newsholm EA and Blomstrand E. The plasma level of some amino acids and physical and mental fatigue. Experientia, 1996, 52(5): 413~415.
[2]Asikainen M, Deboer T, Stenberg D, et al. Sleep deprivation increases brain serotonin turuover in the Djiungarian hamster. Neurosci Letters,1995, 198: 21~28.
[3]Everson CA and Wehr TA. Nutritional and metabolic adaptations toprolonged sleep deprivation in the rat. Am J Physiol, 1993, 264(33):376~380.
[4]Shanaz M, Mendejson WB, Oniani T, et al. Effect of repeated novelstressors on depressive behavior and brain norepinephrin receptor systemin Sprague-Dawley and Wistar Kyoto (WKY) rats. Brain Res, 1994, 649:27~35.
[5]匡培根, 周新富, 徐波.脑组织中单胺类神经介质的提取和荧光分光光度测定法.中国人民解放军军医进修学院学报, 1982, 3(2): 180~186.
[6]Ferstrom JD. Aromatic amino acids and monamine synthesis in the CNS:influence of diet. J. Nutr Biochem, 1990, 10: 508~513.
[7]Thakkar M and Mallick BN. Effect of rapid eye movement sleepdeprivation on rat brain monoamine oxidases. Neurosci, 1993, 55(3):677~681.
[8]Moreau JL, Jacobs BL, Sakai K, et al. Effects of repeated mild stressand two antidepressant treatments on the behavioral response to 5HT1Creceptor activation in rats. Psychopharmacology Berl, 1993, 110(1~2):140~144.
[9]Asakura W and Baquer NB. Involvement of dopamine D2 receptormechanism in the REM sleep deprivation~induced increase in swimmingactivity in the forced swimming test. Pharmacol Biochem Behav, 1994,48(1): 43~48.
[10]Susic V, Stern W, Tipton KF, et al. Potentiation of metaphit~inducedaudiogenic seizures by REM sleep deprivation in rats. Physiol Behav,1993, 54(2): 331~338.
[11]Brady KJ, Brown JW and Thurmond JB. Behavioral and neurochemicaleffects of dietary tyrosine in young and aged mice following cold-swimstress. Pharmac Biochem Behav, 1979, 12(5): 667~672.
[12]丁朝阳, 窦兰君. 睡眠剥夺对大鼠行为和脑电图的影响.解放军预防医学杂志, 1995, 13(6): 430~433.
(收稿日期:1998-07-20)